کیسه هوا


سیستم کیسه هوا یکی از جدیدترین سیستمهایی است که در اکثر خودروهایی که استاندارد

های جهانی را رعایت می نمایند به کار می رود کیسه هوا نقش  بسیاری  در  تصادفات  بازی

می نماید در حال حاضر کمربند ایمنی کمربند سفت کن و کیسه هوا موثرترین سیستمهای

محافظت در هنگام تصادف شدید به شمار می روند وقتی سرعت اتومبیل از 40 کیلومتر در

ساعت بیشتر باشد کمربند به تنهایی کافی نیست تحقیقات پس از حوادث رانندگی نشان داده

است که در 68 درصد موارد کیسه هوا سطح خوبی را تامین می کند بر اساس  بررسی های  

به عمل امده پیش بینی می شود که اگر خودروها در سرتاسر جهان به  کیسه هوا مجهز

شوند  تعدا د مقتولان حوداث رانندگی در هر سال بیش از 50000 نفر کاهش می یابد

روشی که امروزه برای ساخت کیسه هوا متداولتر  است مجتمع کردن اجزای لازم به صورت

یک واحداست بدین ترتیب مقدار سیمکشی و اتصالات کاهش و اعتماد پذیری سیستم افزایش

می یابد نوعی سیستم پایش را نیز باید در کیسه هوا تعبیه کرد زیرا این کیسه را نمی توان

امتحان کرد و اصولا فقط یک بار کار می کند

 

طرز کار کیسه هوا

 

 

 

وقتی خودرویی با سرعت حدود 35 کیلومتر در ساعت با سر تصادف کند رویدادهای زیر به

ترتیب رخ می دهند

1- پیش از برخورد راننده در وضعیت  عادی نشسته است

2- در حدود 15 میلی ثانیه پس از برخورد خودرو به شدت شتاب منفی پیدا می کند  و کیسه

هوا در استانه راه اندازی قرار می گیرد

3- مشتعل ساز سوخت موجود در باد کننده را مشتعل می کند

4- پس از حدود 30 میلی ثانیه تای کیسه هوا باز می شود در این لحظه با مچاله  شدن ب

خشهای از جلو خودرو راننده به جلو پرتاب شده و کمربند ایمنی بسته به نوع ان قفل یا سفت

شده است

5- در حدود 40 میلی ثانیه پس از برخورد کیسه هوا کاملا  باد شده  است  و اندازه حرکت

راننده را جذب می کند

6- در حدود 120 میلی ثانیه پس از برخورد راننده به عقب بر می گردد و باد کیسه هوا از

سوراخهای  جانبی ان خالی می شود تا راننده دید پیدا کند

کیسه هوای سرنشین نیز به همین ترتیب کار میکند کیسه هوا را به صورتهای  مختلف  نصب

می کنند و متداولتر از همه نصب همه اجزا در وسط فلکه فرمان است به هر حال اساس  کار

تفاوتی نمی کند

 اجزا و مدار کیسه هوا

اجزای اصلی سیستم کیسه هوا عبارت اند از

1- کیسه هوای راننده و سرنشین

2- چراغ هشدار دهنده

3- کلیدهای صندلی سرنشین

4- باد کننده اتشی

5- مشتعل ساز

6-حسگرهای ضربه

7- واحد کنترل الکتریکی

کیسه هوا از پارچه نایلونی ساخته شده است و از داخل استر دارد پیش از ان که کیسه هوا

باد شود تا شده است و زیر درپوش مناسبی قرار دارد این پوشش با خطوط گسست خاصی

طراحی شده است در اطراف کیسه هوا سوراخهای  تعبیه شده است که پس از عمل کردن

کیسه به سرعت باد ان را خالی می کنند حجم کیسه هوای راننده در حدود 60 لیتر و حجم

کیسه هوای سرنشین در حدود16۰لیتر است مدار پایش این سیستم یک چراغ هشدار دهنده

دارد این چراغ راننده را از خرابی سیستم مطلع می کند و بخش مهمی از مدار پایش است

بعضی از سازندگان برای افزایش اعتماد پذیری سیستم هشدار دهنده از دو چراغ استفاده

می کنند با استفاده از کلید که در طرف سرنشین (طرف شاگرد) قرار دارد می توان از عمل

کردن کیسه هوای این صندلی وقتی سرنشین ندارد جلوگیری کرد این نکته به ویژه در مورد

کیسه های هوای برخورد

از بغل صدق می کند که در بخش بعد به اختصار انها را شرح می دهیم

باد کننده اتشی و مشتعل ساز را می توان  با هم بررسی کرد باد کننده کیسه هوای راننده در

وسط  فلکه فرمان تعبیه شده است این باد کننده حاوی تعدادی قرص  سوخت است که در

یک محفظه احتراق قرار دارند  مشتعل ساز  از خازنهای  پر تشکیل  می شود که جرقه ای

برای اشتعال سوخت ایجاد می کند  قرصهای سوخت  به سرعت می سوزند و  مقدار معینی 

 گاز نیتروژن  با فشار معین تولید می کنند این گاز از فیلتری می گذرد و وارد کیسه هوا می

شود و ان را باد می کند  وقتی کیسه باد شد از زیر پوشش خود بیرون میزند پس از اماده

شدن کیسه هوا مقدار کمی هیدرو کسید سدیم دران و در فضای داخل خودرو وجود خواهد

داشت در هنگام باز کردن سیستم کار کرده و تمیز کردن اتاق خودرو باید از تجهیزات ایمنی

شخصی استفاده کرد حسگر برخورد به صورتهای مختلف  مکانیکی یا الکترونیکی  ساخته 

می شود سیستم مکانیکی به وسیله فنری کار می کند که  غلتکی را  در جای خود نگه

داشته است  وقتی ضربه شدید تر از حد معین به خودرو وارد شود بر نیروی فنر غلبه می کند

و غلتک ازاد می شود  وقتی غلتک ازاد شد حرکت می کند و یک میکرو سوئیچ را کار اندازی

می کند این کلید در حالت عادی باز است و مقاومتی به  صورت موازی با ان بسته  شده که

امکان پایش  سیستم را فراهم می کند می توان از دو کلید مشابه  استفاده کرد تا کیسه هوا

فقط  هنگامی  عمل کند  که  ضربه  ناشی از  برخورد  از  روبروبه اندازه  کافی  شدید باشد  

یاداوری می شود   که در صورت  چپ  کردن خودرو کیسه هوا عمل نخواهد کرد

نوع دیگر  حسگر برخورد  را  می توان  شتاب  سنج  تلقی کرد  البته این نوع   شتاب سنج  

شتاب منفی را اندازه گیری می کند  دو نوع شتاب سنج وجود دارد  یکی براساس کرنش سنج

و دیگری مبتنی بر بلور پیزو الکتریکی (شبیه حسگر کوبش موتور) تغییر  شدید سرعت خودرو  

سبب حرکت جرم لرزه ای  می شود و  در نتیجه حسگر خروجی  تولید می کند خروجی

حسگر بلوری به صورت بار الکتریکی و خروجی حسگر  کرنش سنجی به  صورت

تغییر مقاومت  است مدارهای الکتریکی مناسب  می توانند این حسگرها را بپایند  و می توان 

انها چنان  برنامه ریزی  کرد  که  وقتی سیگنال  به استانه معینی  رسید  بیشتر  واکنش 

نشان  دهند.مزیت روش اخیر اینست که نیازی به طراحی حسگرهای مختلف برای 

 خودروهای مختلف  نیست زیرا تفاوت  بین  سیستمها  مختلف مورد  استفاده  در خودروهای

مختلف  را می توان با استفاده از نرم افزار ایجاد کرد

اخرین جز این سیستم واحد کنترل الکترونیکی یا واحد کنترل عیب یاب است وقتی از  

حسگرهای مکانیکی استفاده می شود از لحاظ نظری اصلا به واحد کنترل الکترونیکی نیازی

نیست  می توان  برای  به کار  انداختن  کیسه هوا  در هنگام  عمل  کردن کلید  حسگر  از یک

مدار ساده استفاده کرد اما مسئله پایش سیستم یا بخش عیب یاب واحد کنترل الکترونیکی

است که  اهمیت خاصی دارد در صورتی که عیبی در هر بخش از مدار اشکار  سازی شود  

چراغ هشدار دهنده  به کار خواهد افتاد حافظه واحد کنترل الکترونیکی  گنجایش  تا  پنج عیب

یا بیشتر را دارد این حافظه را می توان  بازیابی کرد و ان  را به صورت  رمزهای چشمک  زن  و

غیره  خواند امتحان  کردن این سیستم به روش قدیمی و با استفاده از چندین (مولتی متر) و

سیم یکسره کن توصیه  نمی شود

زیرا این کار ممکن است سبب عمل کردن کیسه هوا شود

پمپ های هیدرولیکی

با توجه به نفوذ روز افزون سیستم های هیدرولیکی در صنایع مختلف وجود پمپ هایی با توان و فشار های مختلف بیش از پیش مورد نیاز است . پمپ به عنوان قلب سیستم هیدرولیک انرژی مکانیکی را که توسط موتورهای الکتریکی، احتراق داخلی و ... تامین می گردد به انرژی هیدرولیکی تبدیل می کند. در واقع پمپ در یک سیکل هیدرولیکی یا نیوماتیکی انرژی سیال را افزایش می دهد تا در مکان مورد نیاز این انرژی افزوده به کار مطلوب تبدیل گردد.

فشار اتمسفر در اثر خلا نسبی بوجود آمده به خاطر عملکرد اجزای مکانیکی پمپ ،  سیال را مجبور به حرکت به سمت مجرای ورودی آن نموده تا توسط پمپ به سایر قسمت های مدار هیدرولیک رانده شود.

حجم روغن پر فشار تحویل داده شده به مدار هیدرولیکی بستگی به ظرفیت پمپ و در نتیجه به حجم جابه جا شده سیال در هر دور و تعداد دور پمپ دارد. ظرفیت پمپ با واحد گالن در دقیقه یا لیتر بر دقیقه بیان می شود.

نکته قابل توجه در در مکش سیال ارتفاع عمودی مجاز پمپ نسبت به سطح آزاد سیال می باشد ، در مورد روغن این ارتفاع نباید بیش از 10 متر باشد زیرا بر اثر بوجود آمدن خلا نسبی اگر ارتفاع بیش از 10 متر باشد روغن جوش آمده و بجای روغن مایع ، بخار روغن وارد پمپ شده و در کار سیکل اختلال بوجود خواهد آورد . اما در مورد ارتفاع خروجی پمپ هیچ محدودیتی وجود ندارد و تنها توان پمپ است که می تواند آن رامعین کند.

 

پمپ ها در صنعت هیدرولیک به دو دسته کلی تقسیم می شوند :

 1- پمپ ها با جا به جایی غیر مثبت ( پمپ های دینامیکی)

 2- پمپ های با جابه جایی مثبت

 

پمپ ها با جا به جایی غیر مثبت : توانایی مقاومت در فشار های بالا را ندارند و به ندرت در صنعت هیدرولیک مورد استفاده قرار می گیرند و معمولا به عنوان انتقال اولیه سیال از نقطه ای به نقطه دیگر بکار گرفته می شوند. بطور کلی این پمپ ها برای سیستم های فشار پایین و جریان بالا که حداکثر ظرفیت فشاری آنها به 250psi    تا3000si   محدود می گردد مناسب است. پمپ های گریز از مرکز (سانتریفوژ) و محوری نمونه کاربردی پمپ های با جابجایی غیر مثبت می باشد.

پمپ سانتریفوژ

 پمپ های با جابجایی مثبت : در این پمپ ها به ازای هر دور چرخش محور مقدار معینی از سیال  به سمت خروجی فرستاده     می شود و توانایی غلبه بر فشار خروجی و اصطکاک را دارد . این پمپ ها مزیت های بسیاری نسبت به پمپ های با جابه جایی غیر مثبت دارند مانند مانند ابعاد کوچکتر ، بازده حجمی بالا ، انعطاف پذیری مناسب و توانایی کار در فشار های بالا ( حتی بیشتر از psi)

پمپ ها با جابه جایی مثبت از نظر ساختمان :

1- پمپ های دنده ای

2 - پمپ های پره ای

3- پمپ های پیستونی

پمپ ها با جابه جایی مثبت از نظر میزان جابه جایی : 

1- پمپ ها با جا به جایی ثابت

 2- پمپ های با جابه جایی متغییر

در یک پمپ با جابه جایی ثابت (Fixed Displacement) میزان سیال پمپ شده به ازای هر یک دور چرخش محور ثابت است در صورتیکه در پمپ های با جابه جایی متغیر (Variable  Displacement) مقدار فوق بواسطه تغییر در ارتباط بین اجزاء پمپ قابل کم یا زیاد کردن است. به این پمپ ها ، پمپ ها ی دبی متغیر نیز می گویند.

باید بدانیم که پمپ ها ایجاد فشار  نمی کنند بلکه تولید جریان می نمایند. در واقع در یک سیستم هیدرولیک فشار بیانگر میزان مقاومت در مقابل خروجی پمپ است اگر خروجی در فشار یک اتمسفر باشد به هیچ وجه فشار خروجی پمپ بیش از یک اتمسفر نخواهد شد .همچنین اگر خروجی در فشار 100 اتمسفر باشد برای به جریان افتادن سیال فشاری معادل 100 اتمسفر در سیال بوجود می آید.

   پمپ های دنده ای   Gear Pump

این پمپ ها به دلیل طراحی آسان ، هزینه ساخت پایین و جثه کوچک و جمع و جور در صنعت کاربرد زیادی پیدا کرده اند . ولی از معایب این پمپ ها می توان به کاهش بازده آنها در اثر فرسایش قطعات به دلیل اصطکاک و خوردگی و در نتیجه نشت روغن در قسمت های داخلی آن اشاره کرد. این افت فشار  بیشتر در نواحی بین دنده ها و پوسته و بین دنده ها قابل مشاهده است.

پمپ ها ی دنده ای :

1- دنده خارجی External Gear Pumps  2– دنده داخلی Internal Gear Pumps  

3- گوشواره ای  Lobe Pumps  

4- پیچی  Screw Pumps            5- ژیروتور Gerotor Pumps        

  1- دنده خارجی External Gear Pumps

در این پمپ ها یکی از چرخ دنده ها به محرک متصل بوده و چرخ دنده دیگر هرزگرد می باشد. با چرخش محور محرک و دور شدن دنده های چرخ دنده ها از هم با ایجاد خلاء نسبی روغن به فضای بین چرخ دنده ها و پوسته کشیده شده و به سمت خروجی رانده می شود.

لقی بین پوسته و دنده ها در اینگونه پمپ ها حدود ( (0.025 mm می باشد.

پمپ دنده خارجی

افت داخلی جریان به خاطر نشست روغن در فضای موجود بین پوسته و چرخ دنده است که لغزش پمپ (Volumetric efficiency ) نام دارد.

با توجه به دور های بالای پمپ که تا  rpm 2700 می رسد پمپاژ بسیار سریع انجام می شود، این مقدار در پمپ ها ی دنده ای با جابه جایی متغییر می تواند از 750 rpm تا 1750 rpm  متغییر باشد. پمپ ها ی دنده ای برای فشارهای تا (کیلوگرم بر سانتی متر مربع200 )  3000 psi طراحی شده اند که البته اندازه متداول آن 1000 psi  است.

  2– دنده داخلی Internal Gear Pumps 

این پمپ ها بیشتر به منظور روغنکاری و تغذیه در فشار های کمتر از 1000 psi  استفاده می شود ولی در انواع چند مرحله ای دسترسی به محدوده ی فشاری در حدود  4000 psi نیز امکان پذیر است. کاهش بازدهی در اثر سایش در پمپ های  دنده ای داخلی بیشتر از پمپ های دنده ای خارجی است.

پمپ دنده داخلی

  3- پمپ های گوشواره ای  Lobe Pumps  

این پمپ ها  از خانواده پمپ های دنده ای هستند که آرامتر و بی صداتر از دیگر پمپ های این خانواده عمل می نماید زیرا هر دو دنده آن دارای محرک خارجی بوده و دنده ها با یکدیگر درگیر نمی شوند. اما به خاطر داشتن دندانه های کمتر خروجی ضربان بیشتری دارد ولی جابه جایی حجمی بیشتری نسبت به سایر پمپ های دنده ای خواهد داشت.

پمپ گوشواره‌ای

  4- پمپ های پیچی  Screw Pumps          

پمپ پیچی یک پمپ دنده ای با جابه جایی مثبت و جریان محوری بوده که در اثر درگیری سه پیچ دقیق (سنگ خورده) درون محفظه آب بندی شده جریانی کاملا آرام ، بدون ضربان و با بازده بالا تولید می کند. دو روتور هرزگرد به عنوان آب بندهای دوار عمل نموده و باعث رانده شدن سیال در جهت مناسب می شوند.حرکت آرام بدون صدا و ارتعاش ، قابلیت کا با انواع سیال ، حداقل نیاز به روغنکاری ، قابلیت پمپاژ امولسیون آب ، روغن و عدم ایجاد اغتشاش زیاد در خروجی از مزایای جالب این پمپ می باشد.

  5- پمپ های ژیروتور Gerotor Pumps        

عملکرد این پمپها شبیه پمپ های چرخ دنده داخلی است. در این پمپ ها عضو ژیروتور توسط محرک خارجی به حرکت در می آید و موجب چرخیدن روتور چرخ دندهای درگیر با خود می شود.

در نتیجه این مکانیزم درگیری ، آب بندی بین نواحی پمپاژ تامین می گردد. عضو  ژیروتور دارای یک چرخ دندانه کمتر از روتور چرخ دنده داخلی می باشد.

حجم دندانه کاسته شده ضرب در تعداد چرخ دندانه چرخ دنده محرک ،   حجم سیال پمپ شده به ازای هر دور چرخش محور را مشخص می نماید.

پمپ ژیروتور

به طور کلی پمپ های پره ای به عنوان پمپ های فشار متوسط در صنایع مورد استفاده قرار می گیرند. سرعت آنها معمولا از 1200 rpm تا 1750 rpm بوده و در مواقع خاص تا 2400 rpm  نیز میرسد. بازده حجمی این پمپ ها 85% تا 90% است اما بازده کلی آنها به دلیل نشت های موجود در اطراف روتور پایین است ( حدود 75% تا 80%  ). عمدتا این پمپها آرام و بی سر و صدا کار می کنند ، از مزایای جالب این پمپ ها این است که در صورت بروز اشکال در ساختمان پمپ بدون جدا کردن لوله های ورودی و خروجی قابل تعمیر است.

فضای بین روتور و رینگ بادامکی در در نیم دور اول چرخش محور ، افزیش یافته و انبساط حجمی حاصله باعث کاهش فشار و ایجاد مکش می گردد، در نتیجه سیال به طرف مجرای ورودی پمپ جریان می یابد. در نیم دور دوم  با کم شدن فضای بین پره ها سیال که در این فضاها قرار دارد با فشار به سمت خروجی رانده می شود. همانطور که در شکل می بینید جریان بوجود آمده به میزان خروج از مرکز(فاصله دو مرکز) محور نسبت به روتور پمپ بستگی دارد و اگر این فاصله به صفر برسد دیگر در خروجی جریانی نخواهیم داشت.

پمپ پره‌ای

پمپ های پره ای که قابلیت تنظیم خروج از مرکز را دارند می توانند دبی های حجمی متفاوتی را به سیستم تزریق کنند به این پمپ ها ، جابه جایی متغییر می گویند. به خاطر وجود خروج از مرکز محور از روتور(عدم تقارن) بار جانبی وارد بر یاتاقان ها افزایش می یابد و در فشار های بالا ایجاد مشکل می کند.برای رفع این مشکل از پمپ های پره ای متقارن (بالانس) استفاده می کنند. شکل بیضوی پوسته در این پمپ ها باعث می شود که مجاری ورودی و خروجی نظیر به نظیر رو به روی هم قرار گیرند و تعادل هیدرولیکی برقرار گردد. با این ترفند بار جانبی وارد بر یاتاقان ها کاهش یافته اما عدم قابلیت تغییر در جابه جایی از معایب این پمپ ها به شمار می آید .( چون خروج از مرکز وجود نخواهد داشت)

پمپ پره‌ای بالانس

 حداکثر فشار قابل دستیابی در پمپ های پره ای حدود 3000 psi  است.

   پمپ های پیستونیپمپ های پیستونی با دارا بودن بیشترین نسبت توان به وزن، از گرانترین پمپ ها هستند و در صورت آب بندی دقیق پیستون ها می تواند بالا ترین بازدهی را داشته باشند. معمولا جریان در این پمپ ها بدون ضربان بوده و به دلیل عدم وارد آمدن بار جانبی به پیستونها دارای عمر طولانی می باشند، اما به خاطر ساختار پیچیده تعمیر آن مشکل است.

از نظر طراحی پمپ های پیستونی به دو دسته شعاعی و محوری تقسیم می شوند.

پمپ های پیستونی محوری با محور خمیده (Axial piston pumps(bent-axis type)) :

در این پمپ ها خط مرکزی بلوک سیلندر نسبت به خط مرکزی محور محرک در موقعیت زاویه ای مشخصی قرار دارد میله پیستون توسط اتصالات کروی (Ball & socket joints)به فلنج محور محرک متصل هستند به طوری که تغییر فاصله بین فلنج محرک و بلوک سیلندر باعث حرکت رفت و برگشت پیستون ها در سیلندر می شود. یک اتصال یونیورسال ( Universal link) بلوک سیلندر را به محور محرک متصل می کند.

پمپ پیستونی

میزان خروجی پمپ با تغییر زاویه بین دو محور پمپ قابل تغییر است.در زاویه صفر خروجی وجود ندارد و بیشینه خروجی در زاویه 30 درجه بدست خواهد آمد.

پمپ های پیستونی محوری با صفحه زاویه گیر  (Axial piston pumps(Swash plate)) :

در این نوع پمپ ها محوربلوک سیلندر و محور محرک در یک راستا قرار می گیرند و در حین حرکت دورانی به خاطر پیروی از وضعیت صفحه زاویه گیر پیستون ها حرکت رفت و برگشتی انجام خواهند داد ، با این حرکت سیال را از ورودی مکیده و در خروجی پمپ می کنند. این پمپ ها را می توان با خاصیت جابه جایی متغیر نیز طراحی نمود . در پمپ های با جابه جایی متغییر وضعیت صفحه زاویه گیر توسط مکانیزم های دستی ، سرو کنترل و یا از طریق سیستم جبران کننده تنظیم می شود. حداکثر زاویه صفحه زاویه گیر حدود 17.5  درجه می باشد.

پمپ پیستونی

پمپ پیستونی

 پمپ های پیستونی شعاعی  (Radial piston pumps)

در این نوع پمپ ها ، پیستون ها در امتداد شعاع قرار میگیرند.پیستون ها در نتیجه نیروی گریز از مرکز و فشار سیال پشت آنها همواره با سطح رینگ عکس العمل در تماسند.

برای پمپ نمودن سیال رینگ عکس العمل باید نسبت به محور محرک خروج از مرکز داشته باشد ( مانند شکل ) در ناحیه ای که پیستون ها از محور روتور فاصله دارند خلا نسبی بوجود آمده در نتیجه مکش انجام میگیرد ، در ادامه دوران روتور، پیستون ها به محور  نزدیک شده و سیال موجود در روتور را به خروجی پمپ می کند. در انواع جابه جایی متغییر این پمپ ها با تغییر میزان خروج از مرکز رینگ عکس العمل نسبت به محور محرک می توان مقدار خروجی سیستم را تغییر داد.

پمپ پیستونی شعاعی

  پمپ های پلانچر (Plunger pumps)

پمپ های پلانچر یا پمپ های پیستونی رفت و برگشتی با ظرفیت بالا در هیدرولیک صنعتی کاربرد دارند. ظرفیت برخی از این پمپ ها به حدود چند صد گالن بر دقیقه می رسد.

پیستون ها در فضای بالای یک محور بادامکی (شامل تعدادی رولر برینگ خارج از مرکز) در آرایش خطی قرار گرفته اند. ورود و خروج سیال به سیلندر ها از طریق سوپاپ ها(شیر های یک ترفه) انجام می گیرد.

 پمپ پلانجر

  راندمان پمپ ها (Pump performance):

بازده یک پمپ بطور کلی به میزان تلرانسها و دقت بکار رفته در ساخت ، وضعیت مکانیکی اجزاء و بالانس فشار بستگی دارد. در مورد پمپ ها سه نوع بازده محاسبه می شود:

1- بازده حجمی که مشخص کننده میزان نشتی در پمپ است و از رابطه زیر بدست می آید

( دبی تئوری که پمپ باید تولید کند /میزان دبی حقیقی پمپ  )=بازده حجمی 2- بازده مکانیکی که مشخص کننده میزان اتلاف انرژی در اثر عواملی مانند اصطکاک در یاتاقان ها و اجزای درگیر و همچنین اغتشاش در سیال می باشد.= بازده مکانیکی

(قدرت حقیقی داده شده به پمپ /قدرت تئوری مورد نیاز جهت کار پمپ )

 3- بازده کلی که مشخص کننده کل اتلاف انرژی در یک پمپ بوده و برابر حاصضرب بازده مکانیکی در بازده حجمی می باشد.

 رانرمان پمپها

علی اینرو دانلود کن بهت کمک می کنه

عکس1

عکس2

عکس3

عکس4


ریاضیات مهندسی پارسه

ریاضیات مهندسی پارسه




دانلود

از اونجای که دوستان سفارش کردن

من ترمو 2 مهندس علوی را گذاشتم

امیدوارم که بهتون کمک کنه.



ترمو 2

استاد علوی

حجم : 4.17mb


ادامه مطلب ...